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ABSTRACT

Today satellite positioning (Doppler or GPS) may more or less re-
place classical, optical astronomical observations. The problem
whether there is any need for Laplace azimuths in the densification
of a framework of satellite fixes by EDM traverses is studied
numerically. The conclusion is that the astronomical observations
can normally be left out without any problem. In the future it is
expected that geodetic astronomy will find its main utility in
controlling the absolute orientations of satellite positioning
systems.
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1. Introduction

Traditionally astronomical observations have played an essential
role for the orientation of horisontal geodetic networks. This is
achieved by the determination of the Laplace azimuth from one
triangulation point to another. These azimuths serve to orient

the network in an absolute astronomical coordinate system, i.e.
with respect to a system of fixed stars. Moreover the astronomical
observations of latitude and longitude have fruitfully promoted the
knowledge of the deflections of the vertical and the interpolation
of geoidal heights, quantities needed for the reduction of most
terrestrial observations to the reference ellipsoid, where, usually
the adjustment of a two-dimensional horisontal network takes place.

Today the geoid and the deflections of the vertical are more easily
determined by terrestrial gravimetric observations in combination

with satellite harmonic coefficients of the geopotential and satellite
Doppler derived geoidal heights. Furthermore the satellite positioning
methods (the currently available Transit system and the forthcoming
Navstar system) offer excellent opportunities for the establishment

of new national frameworks in developing countries solely based on
satellite fixes. The satellite Doppler fixes so derived may be de--
termined to an accuracy of 1 meter in a global ("geocentric") co-
ordinate system. Hence the relative accuracy of one part in 200 000
of fixes 200 km apart is quite realistic and may directly serve as

the framework for further breakdowns by terrestrial observations.

This is equivalent to 1" in the mutual azimuth, which is a number

of present geodetic standard for this distance (see Bomford, 1980,

p. 13-14). Consequently there is hardly any need for further Laplace
azimuth controls. The Doppler fixes 200 km or more apart also serve
well for the study of scale and orientation in already well established
networks in developed countries. Subsequently in many countries (such
as Sweden) the satellite Doppler observations have (at least for the
time being) taken over all the resources for current progress in

Laplace azimuth determination.



[t should be noted that a satellite positioning system provides a
world-wide unique reference frame for national or international
networks. The fact that the orientation of such a system may differ
somewhat from an astronomically defined system should not be a
great problem. A possible transformation of the satellite derived
framework to an astronomical framework is best solved in an inter-

national cooperation and not by each country alone.

Let us now assume that a national framework of satellite fixes
approximately 200 km apart has been established. For the densifica-
tion of the framework the satellite fixes might be kept fixed (in-
finite weight), or they might be included in an adjustment of the
densified network. The densification is most practically achieved
by EDM traversing. As there is no visual connection between the
Doppler or GPS fixes the question arises whether astronomical azi-
muths are needed at the fixes for the densification. Another gquestion
is whether the traverses should be stabilized by observed azimuths
on the middle between the fixes or whether Doppler or GPS obse}va-
tions should be preferred. These problems will be studied in the
rest of this paper. In section 2 we derive the necessary formulas
for studying the error propagations in an EDM traverse. In section
3 we give numerical results, and, finally, in section 4 we present

our conclusions.

2. Derivation of formulas

Consider the traverse given in Figure 1. The following equations are

easily obtained from the traverse
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Figure 1. Traverse

Formulas (1), (2), (4) and (5) represent the usual determination of
X0 and Yn from the end point coordinates. Formula (3) is the con-
dition for directions in a closed traverse and formula (8) is an
extra condition provided by a known azimuth O Finally, the equa-

tions (6) and (7) are valid for known coordinates at Pm.

We now assume that the traverse is straight and approximately
directed along the y-axes. Then we have

cos @, ~ 0 and sin ©; ~ 1

Furthermore we assume that the traverse leg is constant, i.e. di = d
for all i. Under these assumptions the equations (1)-(8) correspond
to the following condition equations with unknown corrections dxn

and dyn to the approximate coordinates at Pn:
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where € v &, are the errors of approximate coordinates, 0 the
i i i

errors of approximate directions, e; the errors of approximate
distances and W, misclosures. Formula (9) yields the following
relation between €  and the errors €; of directly observed angles

Q.
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It can be seen from formulas (1')-(8') that the error in x  stems
from the propagated errors in Xys Xos Xys ©gs @y Oy and Bi’ while
error in Yn stems from errors in Yis Yoo Yy and di' Assuming that
there is no correlation between those two types of error sources
the errors for Xn and ¥, can be derived separately. All observation

errors will be treated as random.

Following Bjerhammar (1973, ch. 20) the covariance matrix QXX of



the adjusted unknowns X in a system of condition equations with
unknowns

AX+Beg=MW (14)

where A and B are known coefficient matrices, € vector of random
observation errors and W is the vector of misclosures, is given by

Qpy = 0% (AT 71 Ay (15)
where
C=80Q8" (16)

Here Q is the covariance matrix of the observations and 02 is the

variance of unit weight. Below 02 is set to unity.

2.1 The variance of Yn

Y is determined by formulas (4'), (5') and (7'). Considering (14)-(16)

with Al = (1,1,1) we thus obtain the elements of C
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2.2 The variance of Xn

X, is determined by formulas (1)-(3), (6) and (85. Considering (15)
we thus obtain the following variance of the solution for x :
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Furthermore
g(R) =1+ 2+ ...+ 2= 2(241)/2
flo) =12+ 2%+ .+ 22 =223+ 32% + 2)/6
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0
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[ i=n+] m > n+l

3. Numerical results

In the numerical computations it was assumed that the total length of
the traverse was 200 km consisting of 20 traverse legs of length 10 km.
The accuracy of the end coordinates was set to £ 50 cm or = 25 cm for
satellite Dopp]er.positioning and £ 5 cm for GPS. Furthermore the
following standard errors were used in the traversing:

Q
"

d 5mm + 1 ppm

0.3 mgon

Q
™w
i

Also the standard error of possible astronomical azimuths were set to
0.3 mgon. By putting very high standard errors at some observations
these observations can be regarded as excluded from the observation
scheme. The result of the computations are depicted in Figures 2-4.

Figure 2 reveals that a single azimuth observation at the middle of
the traverse (Pm) does not pay, while azimuth observations at the

end points and the middle drastically reduces the transversal standard
error. However, Doppler observations at Pm can very well replace the
cumbersome azimuth observations at Pm and the end points. These con-
clusions are even more pronounced when including GPS observations
(Figure 4). Finally the longitudinal standard error oy (Figure 3) is
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not affected by the errors of azimuth or direction observation but
is small due to the assumed high accuracy EDM observations.

4. Concluding remarks

The numerical computations have shown that the break-down of a
satellite Doppler network does not need the zero-directions and
azimuth strengthening on the middle of the traverses, but the
azimuth observations are favourably replaced by an extra Doppler
observation at the middle of the traverse. In this way we avoid
also the possible systematic effects in combining the astronomical
observations and the satellite Doppler observations. The advantage
of the satellite positioning is obviously even more pronounced

when considering the Global Positioning System (GPS). In the future
we can expect that the only real need for astronomical observations
in connection with national or densification networks is for the
absolute orientation with respect to fixed stars or radio sources
of the satellite positioning systems on a global basis.
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